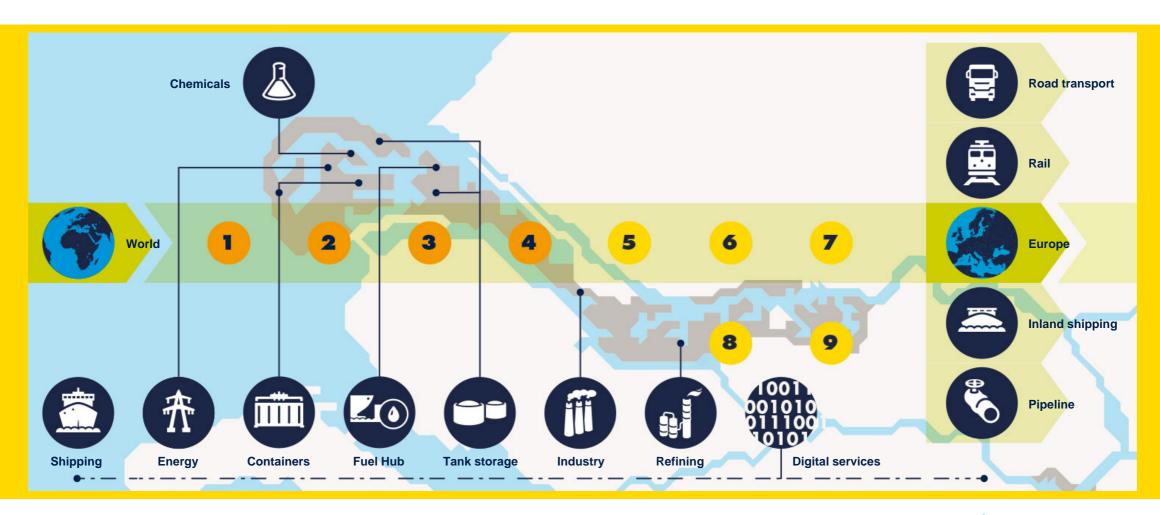
DECARBONISATION AND THE PORT OF ROTTERDAM: CHALLENGES & OPPORTUNITIES

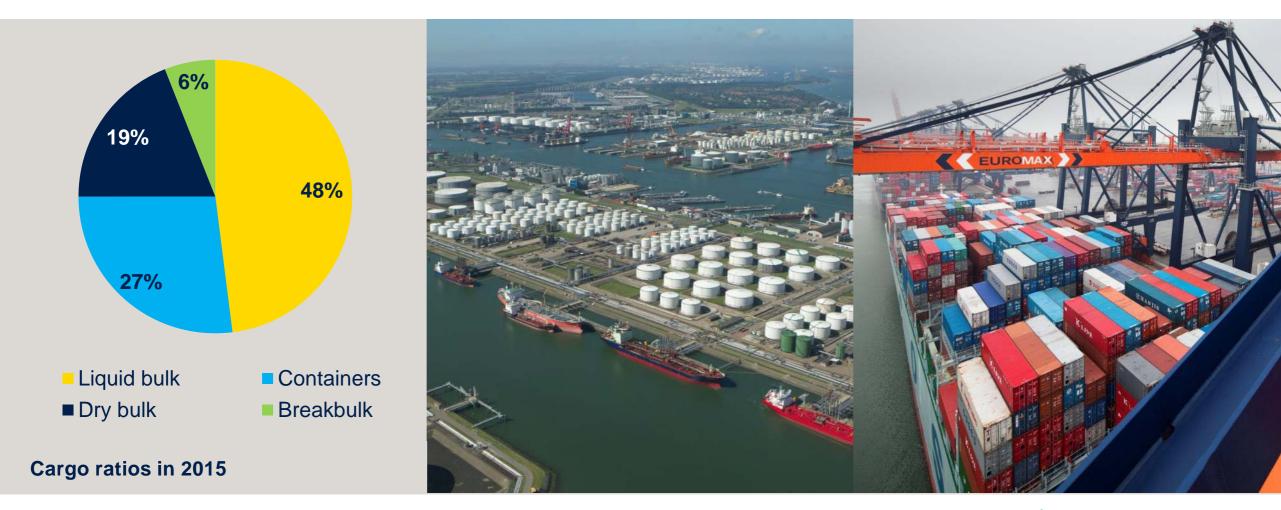
Caroline Kroes – Port of Rotterdam

INTERNATIONAL RESEARCH NETWORK FOR LOW CARBON SOCIETIES – Wuppertal, September 7
2016

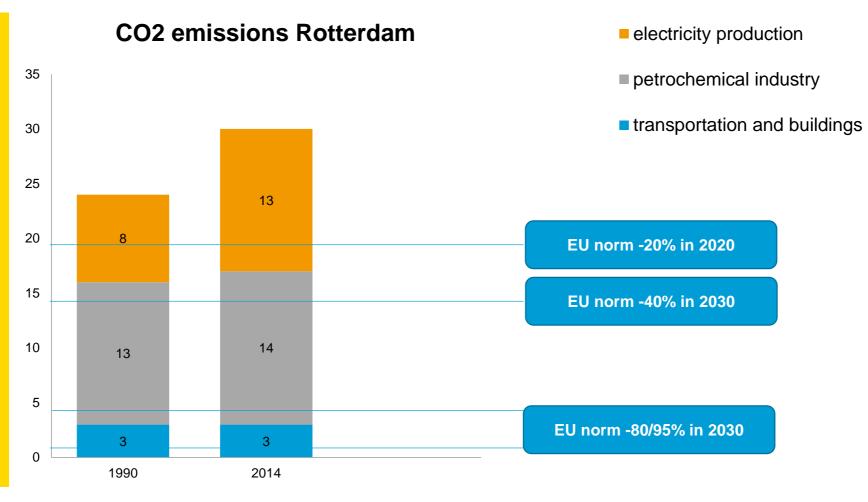
Port and industrial area

Port areas



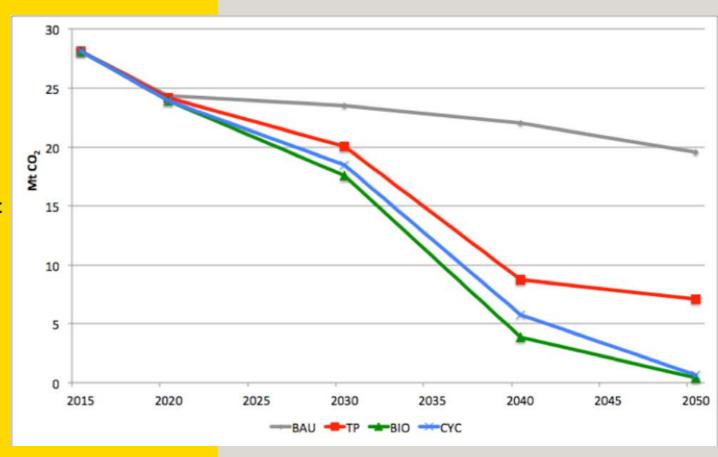


Core tasks of the Port of Rotterdam Authority



Dominated by fossil fuels and logistics

In Rotterdam 19% of the Dutch CO2 is emitted (17% in the port)



The Wuppertal Institute designed pathways to 'deep decarbonization'

Wuppertal report:

- 3 Pathways towards a CO2 neutral port (at least 80-95% CO2 reduction)
- No de-industrialization scenarios
- The challenge is enourmous, but there are various opportunities to decarbonize the port
- Business opportunities that result in a 'lowcarbon port'
 - 'Clean fossil'
 - Renewables
- Next steps: looking for 'coalitions of the willing', position Rotterdam as flagship decarbonization region

Overview decarbonization scenarios

Scenario	Reduction	Key Mitigation strategies	Strategy for the cluster	Key changes in market environment by 2050
BAU	-30%	 (slow) adoption of BaT 	 Efforts focus on keeping cluster in current form 	 Decrease in demand for oil refining products
TP	-75%	Rapid adoption BaTSome P2HCoal CCS	Efforts focus on keeping cluster in current form	 Strong decrease in demand for fossil transport fuels Phase out of unabated coal
BIO	-98%	Rapid adoption BaTP2HBiomass CCS	 Oil as feedstock for chemicals Power plants continue with biomass and CCS 	 Demand for fossil fuels virtually zero Phase out coal power generation BIO: large amounts sust. biomass available on world market CYC: No biomass, but large amount of carbonfree power and/or H2 available
CYC	-98%	 Rapid adoption BaT P2H Recycled plastics for chemicals 	 Recycled plastics are used as feedstock for chemicals 	

Energy 1: Reduce environmental impact of fossil energy

- Raise energy efficiency
 - Use residual heat (and CO₂) of industry and coal-fired plants for greenhouse farming and district heating (Cluster West Heat Roundabout)
 - Use residual heat of industry for other industry (Botlek Steam Pipe)
- Carbon Capture & Storage pilot project / ROAD
- Co-firing of biomass in new coal-fired power stations

Botlek Steam Pipe

Energy efficiency: Cluster West Heat Roundabout

- Pipeline between the port Westland The Hague: distribution network for greenhouses
- Energy savings: 7.3 PJ per year;
- Reduction in CO₂ emissions: 450 ktons/year;
- Reduction in NO_x emissions: 2 ktons/year

Carbon Capture & Storage: ROAD-project

Maasvlakte **Power Plant 3** CO₂ Capture **Platform Plant** Compression & Metering 3,5 km 20 km Pipeline offshore North Sea 5 km Pipeline onshore Maasvlakte Reservoir Not on scale

LNG as a transport fuel

Energy 2: Develop renewable energy sector

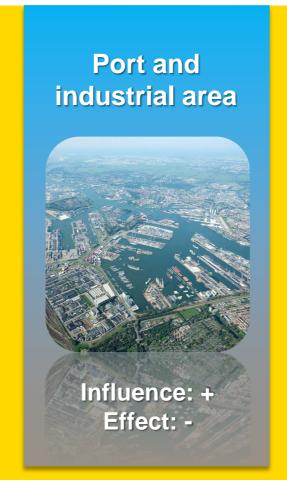
- Rotterdam already has the largest biobased cluster in the world and aims to maintain its position as front-runner
 - 2 biochemical plants; 4 biofuel plants;
 - 4 palm oil refineries
- Neste to start building biopropane plant (strengthening the biobased cluster)
- Wind turbines and solar panels in the port
- Location of Sif Verbrugge

January 2016: Start of Slufter solar panel test project

Biobased

Neste to build biopropane plant at Maasvlakte


Offshore & Maritime Industry



Sif Verbrugge to produce pylons for wind turbines at Maasvlakte 2

Sustainability: Scope and influence

Sustainability: Port of Rotterdam Authority

- Fleet using low-sulfur fuel
- Use of soot filters and catalytic converters on new vessels
- Three hybrid patrol boats (from 2016 on)
- 'Green' flights and green fleet of cars
- Climate neutral since 2011
- Active nature policy
- Clear assessment framework as basis for air-related measures and sustainability in allocation policy

Sustainability: Port and Industrial area

- Co-siting geared towards energy saving
- Shared use of steam
- ROAD pilot project in the capture and storage of CO₂
- Residual heat from port used to heat homes and greenhouses in the region
- Voluntary agreement nautical service providers on use of low-sulfur fuel
- Shore-based power for inland shipping and StenaLine Hoek van Holland

Shared use of steam

Sustainability: Chain

- Modal split demands terminal Maasvlakte 2
- Environmental zone Maasvlakte 2
- Discount for clean ships with Environmental Ship Index (ESI)
- Encouraging clean engines in inland shipping
- Green Award for inland shipping
- Promote use of LNG as a transport fuel
- International cooperation with other ports:
 World Ports Climate Initiative
- Container Transferium Alblasserdam

Clean engines in inland shipping

